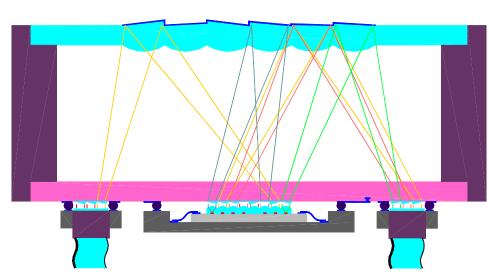


Optoelectronic Intelligent RAM Multiprocessor: *Opto-IRAM*

Objectives:


- Scalable, high-performance, parallel processing with general-purpose utility
- Low processor–memory latency
- Low power-delay-volume product
- Exploit VLSI Photonics core technologies

Approach:

- IRAM microprocessor architecture for low local memory latency
- Simple cache-coherent protocol and wide optical transport for low inter-chip latency
- High-performance scalar processor plus massively parallel Computational RAM (C-RAM) processing element array
- Design automation to optimize electrical, optical interconnect resource utilization
- Advanced free-space OE module concept

Accomplishments:

- OCRAM architecture
- OE module physical design for virtual prototyping
- Placement and routing tool for mixedmode interconnect optimization

Program Team

Georgia Tech ECE/MiRC:

- T. J. Drabik (PI)
- A. Chatterjee (PI)
- J. D. Meindl (PI)
- S. Yalamanchili (PI)
- R. C. Copeland (GRA)
- C.-S. Seo (GRA)

Sun Microsystems:

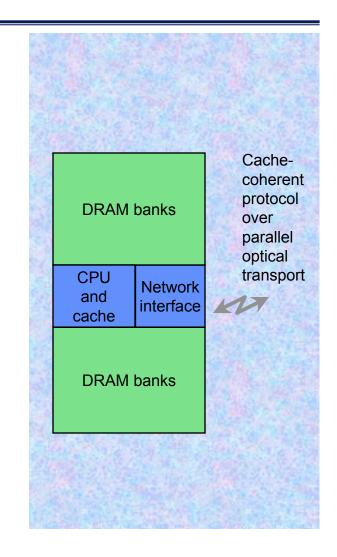
- · H. Davidson
- R. Lytel
- A. Saulsbury

Opto-IRAM

Overview of Technical Approach

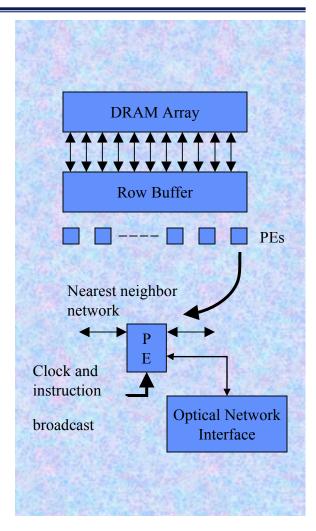
Central Concepts:

- Reduced memory latency in multiprocessors with on-chip RAM and wide, parallel, optical inter-chip network
- Synergy of Computational-RAM concept with global, optical inter-PE netw'k Computing and network architecture:
- Fast scalar processor; on-chip SDRAM; array of bit-serial PEs at sense amps
- Cache-coherent, parallel variant of *S-Connect* for low-latency shared memory *Advanced OE module concept*:
- Free-space optics on-module; compliant guided-wave optics between modules
- Simple physical design with common beam specification at module periphery *Design automation:*
- Conjoint optimization of bimodal free-space-optical/wire global interconnects *Modeling:*
- Holistic model linking system performance to OE component characteristics



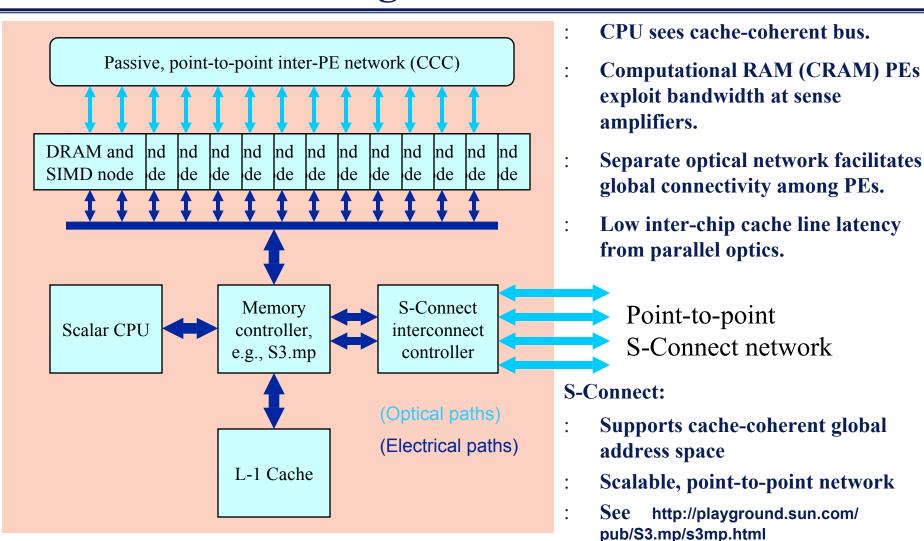
Opto-IRAM Rationale

- Processor—memory latency requires implementing resource-intensive latency-hiding mechanisms.
- © Bring DRAM onto the CPU: Intelligent RAM (IRAM) . . .
- A single IRAM node does not have scalable memory.
- C Network multiple chips together to expand memory . . .
- Going off-chip for more memory forfeits the latency advantage of on-chip DRAM.
- Use the physical bandwidth and parallelism of VLSI Photonics program technologies, together with simple distributed memory protocols, to implement off-chip memory access with low latency . . .



Optical Computational RAM (OCRAM) Rationale

- Conventional memory system architecture masks the enormous memory bandwidth developed at the sense amplifiers.
- In addition to the scalar CPU, place simple (e.g., bit-serial)
 PEs in the DRAM banks...
- PEs need interconnection for data-parallel applications.
- Interconnect PEs into a mesh-like network . . .
- Inter-PE latency across mesh is large.
- Implement small-diameter inter-PE network using freespace optics...



DARPA

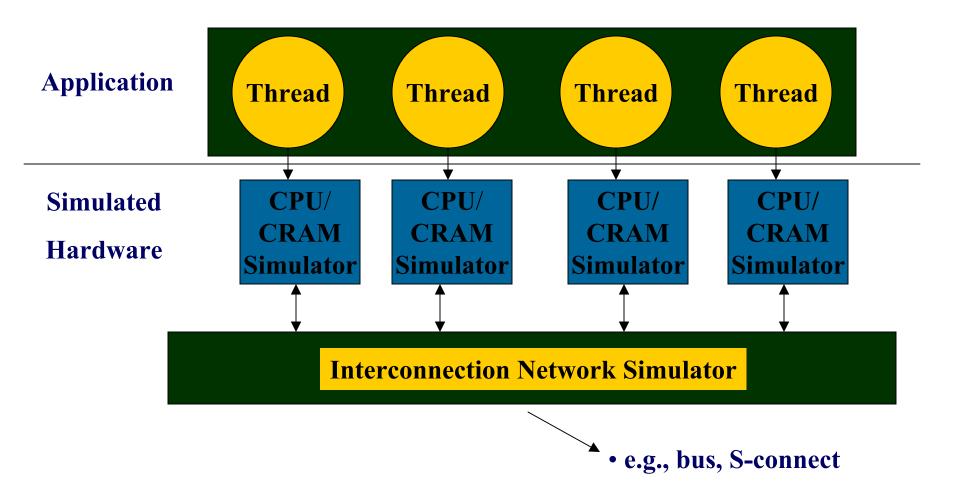
Opto-IRAM/CRAM Node Overall

Organization

Unique Features of OCRAM

- Decouple PE cycle from memory cycle
 - Use double-buffering to overlap PE operation and memory access
 => multiple instruction streams, similar to pipelining
 - PE is simple and fast can be clocked much faster than DRAM
 - Use destructive DRAM reads when possible fast and low power
- Balance compute bandwidth and memory bandwidth
 - One PE for multiple DRAM columns
 - Many PE operations overlap each DRAM operation
 - Width constraints on PE are loosened more efficient layout
- Inter-PE communication bandwidth
 - Solution: Use optical interconnect

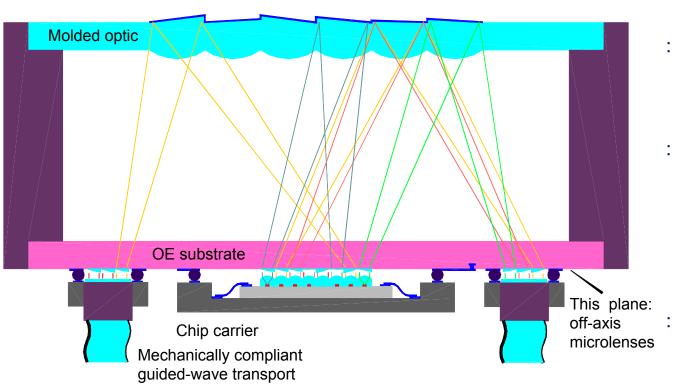
Sample OCRAM Microprogram (Add32) - 195 clock cycles


```
c ADD R2 0 31 ; init. Loop ctr.
              ; init. Carry in
p SIMD Y<-0
c LOOPO end R2 R3; R2 counts 31..0, R3 counts 0..31
c ADD R4 32 R3 ; calculate bit# of hiword[R3]
a BITSEL R4
                 ; M is now alias for hiword[R3]
p SIMD X<-M
                 ; save hiword[R3] in X
a BITSEL R3
                 ; M is now alias for loword[R3]
p SIMD M<=X^Y^M ; calc. sum & store in loword[R3]
end:
\boldsymbol{p} SIMD Y<=/M*(X+Y)+XY; calc. Carry out & store in Y
```


OCRAM System Simulator

OCRAM Status and Goals

Status:


- OCRAM Instruction Set Definition Complete
- PE Preliminary Layout Complete
- Preliminary SPICE Simulations Performed (not extracted from layout)
- Microcode for several basic operations completed

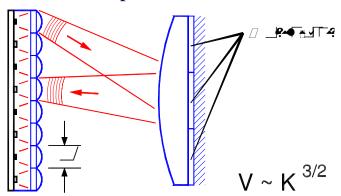
Opto-IRAM Single-Chip Module

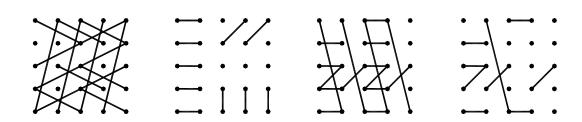
Scalable optical interconnect hierarchy

Free-space intra-chip, Guided-wave (compliant) inter-chip connections.

Single optical interface specification to OE module substrate.

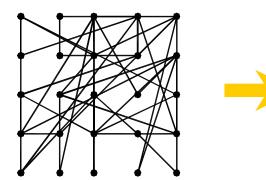
Most critical alignment (microlenses to sources/detectors) is drawn within a highly controlled environment (VLSI/OE aggregate).

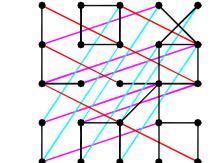

Free-space path between imaging bundle and chip provides routing and access to any chip ports.



Regularity and Free-Space Optical Interconnection: CAD Opportunity

Fourier-plane system volume is sensitive to space-variance:




Some patterns with identical space-variance:

Regularity matters, not path length.

Optimal placement and net assignment:

Shorter average wire length

Regular optical pattern

Physical compactness

CAD for Partitioning/Placement

Problem statement:

- Given: Functional cells, netlist, and lattice of optical input and output ports.
- Place cells and assign nets to optical ports to minimize the cost function.

Cost function:

- Terms for : wire resources cost, : optical resources cost
- Wire resources cost term $\int \mathbf{O} + 2 \mathbf{\bullet}$ of wire length distribution
- Optical resources cost term \(\end{array}\) space-variance of optical paths

Algorithm:

- Evaluate many standard-cell placements.
 For each placement, evaluate best assignment of nets to optics;
 For each assignment, evaluate the best routing of electrical nets:
 To other nets,
 To optical ports.
- Simulated annealing, genetic algorithms for stochastic optimization

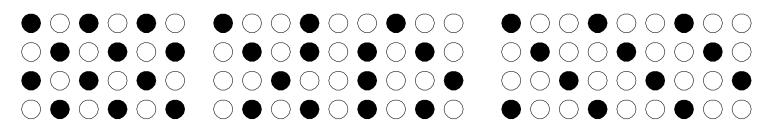
Partitioning/Placement Approach

Optimization

- Simulated Annealing
- Genetic Optimization
- Cost Function tries to maximize utilization of optical bandwidth
- Layout compaction done after each "move"...

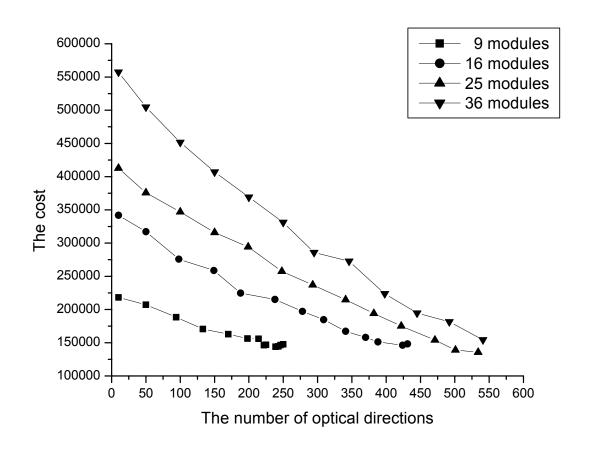
Cost function =
$$\sum (electrical \ wire \ length)^n + \left(\frac{K}{utilization \ of \ optical \ bandwidth}\right)^m$$

Utilization = (Bandwidth utilized / Available bandwidth)

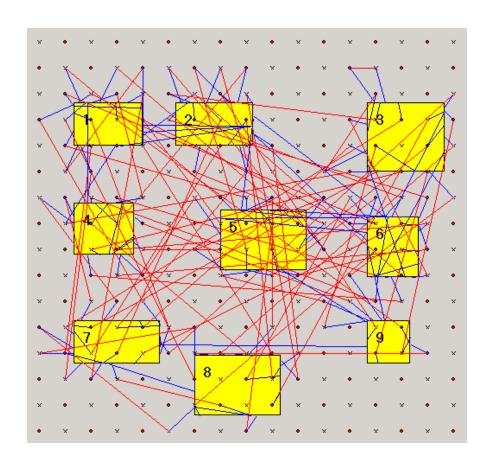


Results: Branch and Bound

No. of gates	% of wires converted to optical links	% reduction in longest wire length	% reduction of modified mean	No. of optical directions
625	24	45	30	69
2500	23	40	29	120
5000	26	47	33	170
10000	21	37	25	280

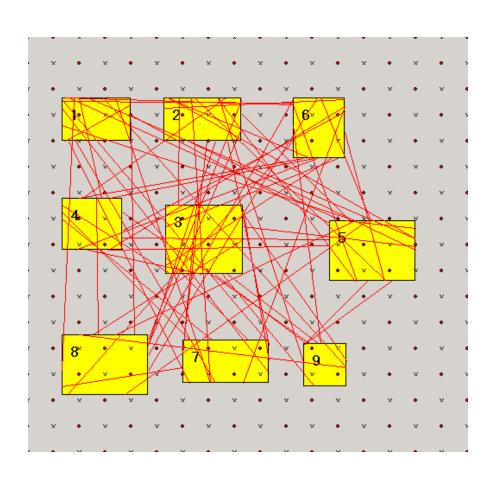

(a) (b) (c)

Cost Reduction vs. No of Optical Directions

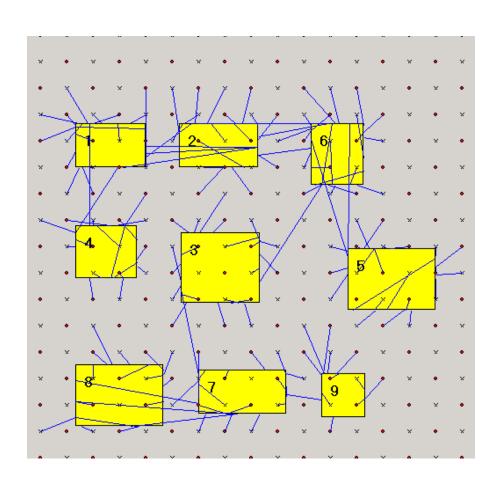


The graph for cost vs. optical directions with various number of modules

Routing Without Optimization



Optimized Optical Nets



Optical routing with optimization

Optimized Electrical Nets

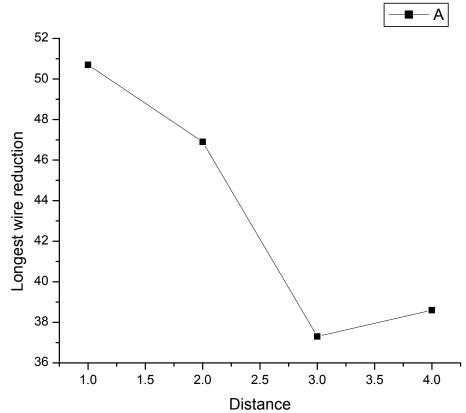
Electrical routing with optimization

Optimization Results

No. of modules	% of wires converted to optical links	% reduction in longest wire length	% reduction of mean cost	No. of optical directions	
9	25	39	22		
16	44	44	28	437	
25	57	52	40	567	
36	60	69	45	598	

Comparison with different number of modules

Optimization With Diff Sensor Layouts


Arrange- ment	% of wires converted to optical links	% reduction in longest wire length	% reduction of mean cost	No. of optical directions	
(a)	44	44	28	437	
(b)	42	37	24	399	
(c)	40	32	23	373	

Comparison with different sensor distribution

Optimization: Global vs. Local Interconnect

The graph for the reduction of longest wire vs. distance with 25 modules and 100 optical direction

Optimization Results

		10	50	100	200	300	400	500	600
9	OD	9	49	96	175	208	249	246	246
	Total	2 %	10 %	18 %	30 %	34 %	38 %	37 %	38 %
	Longest	11 %	32 %	26 %	35 %	36 %	33 %	42 %	39 %
16	OD	9	49	99	195	285	345	389	437
	Total	2 %	9 %	19 %	33 %	44 %	51 %	55 %	58 %
	Longest	20 %	26 %	41 %	41 %	45 %	36 %	45 %	44 %
	OD	9	49	99	199	299	395	486	567
25	Total	2 %	10 %	19 %	34 %	48 %	58 %	67 %	73 %
	Longest	21 %	31 %	33 %	47 %	54 %	53 %	58 %	52 %
36	OD	9	49	99	199	299	399	498	598
	Total	2 %	10 %	19 %	34 %	49 %	60 %	69 %	78 %
	Longest	19 %	31 %	46 %	47 %	56 %	62 %	66 %	69 %
49	OD	9	49	99	199	299	399	499	596
	Total	2 %	10 %	19 %	35 %	61 %	61 %	70 %	78 %
	Longest	17 %	31 %	48 %	58 %	61 %	61 %	68 %	64 %

Opto-IRAM Summary of Accomplishments

Computing and network architecture

- OCRAM node architecture, programming model
- Cache-coherent, shared-memory multiprocessor architecture based on S-Connect

Holistic modeling and virtual prototyping

• Behavioral link modeling with Spice, Chatoyant

Optical interconnect architecture

Advanced OE module physical design

Design automation

New partition/placement tool for mixed-mode interconnect optimization

